
1

3 Cycle Non-Pipeline Harvard Structure

Microcontroller
Md. Jannatun Nayem Tonmoy, Anwar Hakim Tamim, Abu Muhammad Shafayat Kabir,

Asaduzzaman Seam, Md. Khairul Islam Ratul

Department of EEE, Ahsanullah University of Science and Technology

180105091@aust.edu, 180105092@aust.edu, 180105095@aust.edu, 180105100@aust.edu,

180105198@aust.edu

Abstract— This document notes step by step procedures

of synthesizing and physical design of a 3 cycle non-

pipelined Harvard Structure Micro-Controller. This

document also gives an idea of problems can be occurred

during the process and how to solve those problems. We

used Genus tool to synthesize and Encounter tool to

physically design the microcontroller. Encounter tool is

also used for removing violations and errors. In our

design we used both command and manual method to

remove violations and errors. This document also tries to

solve problems and violations occurring when using

Encounter tool as it is designed for professional uses and

not for educational purposes. As this is a group project,

this paper is divided into several parts to better suit

individual group member. This document also gives a

rough idea for future aspect of the project, as

Microcontrollers are used in almost every aspect of

electronics field. But future problems are not described

in detail in this document.

Keywords— Microcontroller, Genus, Encounter, DRC,

Connectivity, Via, Violation.

I. INTRODUCTION

A. Microcontroller

A microcontroller is a compact integrated circuit

designed to govern a specific operation in an

embedded system. A typical microcontroller includes

a processor, memory and input/output (I/O)

peripherals on a single chip.

Sometimes referred to as an embedded controller or

microcontroller unit (MCU), microcontrollers are

found in vehicles, robots, office machines, medical

devices, mobile radio transceivers, vending machines

and home appliances, among other devices. They are

essentially simple miniature personal computers (PCs)

designed to control small features of a larger

component, without a complex front-end operating

system (OS).

The Harvard architecture stores machine instructions

and data in separate memory units that are connected

by different busses. In this case, there are at least two

memory address spaces to work with, so there is a

memory register for machine instructions and another

memory register for data. Computers designed with

the Harvard architecture are able to run a program and

access data independently, and therefore

simultaneously. Harvard architecture has a strict

separation between data and code. In a Non-Pipelining

system, processes like decoding, fetching, execution

and writing memory are merged into a single unit or a

single step. Only one instruction is executed at the

same time.

 Fig I 1: Architecture of Microcontroller

The following diagram is the architecture of the

microcontroller. The datapath is shown as black arrows

and control signals are red arrows.

The following two type of components holds

programming context –

• Program counter, program memory, data

memory, accumulator, status register (green

boxes). They are programmer visible registers and

memories.

• Instruction register and data register (purple

boxes). They are programmer invisible registers.

The following two type of components is Boolean

logics that do the actual computation work. They are

stateless -

mailto:180105091@aust.edu
mailto:180105095@aust.edu
https://internetofthingsagenda.techtarget.com/definition/embedded-system

2

• ALU, MUX1, MUX2, Adder (blue boxes), used

as a functional unit.

• Control Logic (yellow box), used to denote all

control signals (red signal).

B. Instruction Set

There are 3 sets of instruction. Each instruction is 12

bits. There are 3 types of instructions by encoding,

shown as following:

• M type: one operand is accumulator (sometimes

ignored) and the other operand is from data

memory; the result can be stored into

accumulator or the data memory entry (same

entry as the second operand).

• I type: one operand is accumulator and the other

operand is immediate number encoded in

instruction; the result is stored into accumulator.

• S type: special instruction, no operand required.

(e.g., NOP).

The instruction encoding is given in following table:

Table I 1: Instruction Encoding

These instructions can be grouped into 4 categories by

function -

1. ALU instruction: using ALU to compute result;

2. Unconditional branch: the GOTO instruction;

3. Conditional branch: the JZ, JC, JS, JO

instruction;

4. Special instruction: the NOP.

Short description of each instructions are given below:

i) M Type Instructions

The general format of M type instruction is shown

as following –

The tables below have detailed information:

Table I 2: M Type Instruction

ii) I Type Instructions

The general format of I type instruction is shown as

following:

The pictures below have detailed information:

3

Table I 3: I Type Instruction

iii) S Type Instructions

The general format of S type instruction is shown as

following –

There is only one S type instruction i.e., NOP

instruction.

Table I 4: S Type Instruction

C. Timing and State Transition

The Timing and State Transition are as follows:

Fig I 2: Timing and State Transition

Each instruction needs 3 clock cycles to finish, i.e.

FETCH stage, DECODE stage, and EXECUTE stage.

It is not pipelined. Together with the initial LOAD

state, it can be considered as an FSM of 3 states

(technically 4 states).

There are 4 states. They are:

• LOAD (initial state): load program to program

memory, which takes 1 cycle per instruction

loaded;

• FETCH (first cycle): fetch current instruction

from program memory;

• DECODE (second cycle): decode instruction to

generate control logic, read data memory for

operand;

• EXECUTE (of the third cycle): execute

instruction;

D. Transitions

1. LOAD → FETCH (initialization finish):

2. Clear content of PC, IR, DR, Acc, SR; DMem

is not required to be cleared.

3. FETCH → DECODE (rising edge of second

cycle):

4. IR = PMem [PC]

5. DECODE → EXECUTE

6. DR = DMem [IR[3:0]]

7. EXECUTE → FETCH (rising edge of first

cycle and fourth cycle):

For non-branch instruction, PC = PC + 1; for branch

instruction, if branch is taken, PC = IR [7:0], otherwise

PC = PC + 1;

For ALU instruction, if the result destination is

accumulator, Acc = ALU.Out; if the result destination

is data memory, DMem [IR[3:0]] = ALU.Out.

For ALU instruction, SR = ALU.Status;

The transitions can be simplified using enable port of

corresponding registers, e.g., assign ALU.Out to Acc at

every clock rising edge if Acc.E is set to 1. Such

control signals as Acc.E are generated as a Boolean

function of both current state and the current

instruction.

4

E. Components

1) Register

The microcontroller has 3 programmer visible

register:

1. Program Counter (8 bit, denoted as PC):

Contains the index of current executing

instruction.

2. Accumulator (8 bit, denoted as Acc): Holds

result and 1 operand of the arithmetic or logic

calculation.

3. Status Register (4 bit, denoted as SR): Holds 4

status bit, i.e. Z, C, S, O.

• Z (zero flag, SR[3]): 1 if result is zero, 0

otherwise.

• C (carry flag, SR[2]): 1 if carry is

generated, 0 otherwise.

• S (sign flag, SR[1]): 1 if result is

negative (as 2’s complement), 0

otherwise.

• (overflow flag, SR[0]): 1 if result

generates overflow, 0 otherwise.

Each of these registers has an enable port, as a flag for

whether the value of the register should be updated in

state transition. They are denoted as PC.E, Acc.E, and

SR.E.

The microcontroller has 2 programmer invisible

registers:

1. Instruction Register (12 bit, denoted as IR):

Contains the current executing instruction.

2. Data Register (8 bit, denoted as DR):

Contains the operand read from data memory.

Similarly, each of these registers has an enable port as

a flag for whether the value of the register should be

updated in state transition. They are denoted as IR.E

and DR.E

2) Program Memory

The microcontroller has a 256-entry program memory

that stores program instructions, denoted as PMem.

Each entry is 12 bits, the ith entry is denoted as

PMem[i]. The program memory has the following

input/output ports.

1. Enable port (1 bit, input, denoted as PMem.E):

enable the device, i.e., if it is 1, then the entry

specified by the address port will be read out,

otherwise, nothing is read out.

2. Address port (8-bit, input, denoted as

PMem.Addr): specify which instruction entry is

read out, connected to PC.

3. Instruction port (12-bit, output, denoted as

PMem.I): the instruction entry that is read out,

connected to IR.

4. 3 special ports are used to load program to the

memory, not used for executing instructions.

5. Load enable port (1 bit, input, denoted as

PMem.LE): enable the load, i.e., if it is 1, then

the entry specified by the address port will be

load with the value specified by the load

instruction input port and the instruction port is

supplied with the same value; otherwise, the

entry specified by the address port will be read

out on instruction port, and value on instruction

load port is ignored.

6. Load address port (8-bit, input, denoted as

PMem.LA): specify which instruction entry is

loaded.

7. Load instruction port (12-bit, input, denoted as

PMem.LI): the instruction that is loaded.

3) Data Memory

The microcontroller has a 16-entry data memory,

denoted as DMem. Each entry is 8 bits, the i-th entry is

denoted as DMem[i]. The program memory has the

following input/output ports -

1. Enable port (1 bit, input, denoted as DMem.E):

Enable the device, i.e. if it is 1, then the entry

specified by the address port will be read out

or written in; otherwise nothing is read out or

written in.

2. Write enable port (1 bit, input, denoted as

DMem.WE): Enable the write, i.e., if it is 1,

then the entry specified by the address port

will be written with the value specified by the

data input port and the data output port is

supplied with the same value; otherwise, the

entry specified by the address port will be read

out on data output port, and value on data

input port is ignored.

3. Address port (4-bit, input, denoted as

DMem.Addr): Specify which data entry is

read out, connected to IR[3:0].

5

4. Data input port (8-bit, input, denoted as

DMem.DI): The value that is written in,

connected to ALU.Out.

5. Data output port (8- b i t , output, denoted as

DMem.DO): The data entry that is read out,

connected to MUX2.In1.

4) PC Adder

PC adder is used to add PC by 1, i.e., move to the next

instruction. This component is pure combinational. It

has the following ports –

1. Adder input port (8-bit, input, denoted as

Adder.In): Connected to PC.

2. Adder output port (8-bit, output, denoted as

Adder.Out): Connected to MUX1.In2.

5) MUX1

MUX1 is used to choose the source for updating PC.

If the current instruction is not a branch or it is a branch

but the branch is not taken, PC is incremented by 1;

otherwise PC is set to the jumping target, i.e. IR [7:0].

It has the following ports –

1. MUX1 input 1 port (8-bit, input, denoted as

MUX1.In1): Connected to IR [7:0].

2. MUX1 input 2 port (8-bit, input, denoted as

MUX1.In2): Connected to Adder.Out.

3. MUX1 selection port (1- bit, input, denoted as

MUX1.Sel): Connected to control logic.

4. MUX1 output port (8-bit, output, denoted as

MUX1.Out): Connected to PC.

6) ALU

ALU is used to do the actual computation for the

current instruction. This component is pure

combinational. It has the following ports.

1. ALU operand 1 port (8-bit, input, denoted as

ALU.Operand1): connected to Acc.

2. ALU operand 2 port (8-bit, input, denoted as

ALU.Operand2): connected to MUX2.Out.

3. ALU enable port (1-bit, input, denoted as

ALU.E): connected to -control logic.

4. ALU mode port (4-bit, input, denoted as

ALU.Mode): connected to control logic.

5. Current flags port (4-bit, input, denoted as

ALU.CFlags): connected to SR.

6. ALU output port (8 bit, output, denoted as

ALU.Out): connected to DMem.DI.

7. ALU flags port (4- bit, output, denoted as

ALU.Flags): the Z (zero), C (carry), S (sign),

O (overflow) bits, from MSB to LSB, connected

to status register.

The mode of ALU is listed in the following table:

Table I 5: Modes of ALU

7) MUX2

MUX2 is used to choose the source for operand 2 of

ALU. If the current instruction is M type, operand 2 of

ALU comes from data memory; if the current

instruction is I type, operand 2 of ALU comes from

the instruction, i.e., IR [7:0]. It has the following ports

–

1. MUX2 input 1 port (8-bit, input, denoted as

MUX2.In1): connected to IR [7:0].

2. MUX2 input 2 port (8-bit, input, denoted as

MUX2.In2): connected to DR.

3. MUX2 selection port (1- bit, input, denoted

as MUX2.Sel): connected to control logic.

4. MUX2 output port (8-bit, output,

denoted as MUX2.Out): connected to ALU.

Operand2.

F. Control Unit Design

Control signal is derived from the current state and

current instruction. The control logic component is

purely combinational. There are in total 12 control

signals, listed as follows-

1. PC.E: enable port of program counter (PC);

2. Acc.E: enable port of accumulator (Acc);

3. SR.E: enable port of status register (SR);

4. IR.E: enable port of instruction register (IR);

5. DR.E: enable port of data register (DR);

6. PMem.E: enable port of program memory

(PMem);

7. DMem.E: enable port of data memory (DMem);

6

8. DMem.WE: write enable port of data memory

(DMem);

9. ALU.E: enable port of ALU;

10. ALU.Mode: mode selection port of ALU;

11. MUX1.Sel: selection port of MUX1;

12. MUX2.Sel: selection port of MUX2;

The following table documents the detail of how

these control signals are generated important signals

are marked in red:

TABLE I 6: Control Signal

II. RTL (Netlist) and Test Bench

RTL view of the netlist is given below:

Test bench output of the netlist of microcontroller:

III. SYNTHESIS RESULT

Our group has following synthesis constraints:

TABLE II 1: S synthesis Constraints

Parameter Value

Clock Frequency (MHz) 83.33

Maximum Transition 3

Driving Cell BUFX4

Operating Condition Slow

Output Delay (ms) 0.6

Max Fanout 12

[1] Screenshot of VIM editor

Synthesis is done using genus tool. Here are the

screenshots while using VIM editor. We used design

constraints given above.

[2] GUI Show

A screenshot of using gui_show command.

[3] Control Logic Unit

7

[4] Data Memory Unit

[5] MUX 1 Unit

[6] MUX 2 Unit

[7] PC Adder Unit

[8] Program Memory Unit

IV. PNR OUTPUTS

Our group had following design constraints:

Table III 1: Design Constraints

Parameter Value

Distance (Die to Core) 11

Ring (W, D) 3,2

Stripe 3

Initial Density 40%

Below screen-shots are given with short description:

1. Importing Design and MMMC Browser Window

Here a screenshot MMMC window after all the inputs

of analysis views are given.

8

2. Initial Floorplan

Initial design of the floorplan after given MMMC

analysis view inputs.

3. Floorplan with Specification

Floorplan of the design within given constraints.

4. Adding Ring

Adding ring in dye area.

5. Adding Stripes

Here we are adding 3 stripes as given constraints.

6. After Adding Stripes

Adding 3 stripes.

7. Power Planning

Here, we a final screenshot after power planning

within given constraints.

9

8. SR Route

Starting SR routing here.

9. SR Route (Via Generation)

A screenshot of Via generation tab.

10. SR Route Final

Final screenshot of routing window.

11. Pin Placement

Necessary placement for the pin in all direction.

12. Placing Design

After placing the design initially.

13. Placement Without Net

Screenshot with net view turned off.

10

14. Time Design (Pre CTS)

STA report (detail given below) before CTS.

15. Optimizing Design (Pre CTS)

Optimized STA report (detail given below) before

CTS.

16. Creating Clock

We are building clock for the design.

17. Using CTS

Here we are building a clock tree.

18. Routing Window

Here we are routing the design.

19. Routing Attribute

Here we see the wire status is routed.

11

20. Time Design (Setup)

Timing design for setup mode.

21. Time Design (Hold)

Timing design for hold mode.

22. Optimizing Design

Optimizing design for setup mode.

23. Optimizing Design (Hold)

Optimizing design for hold mode.

24. Optimized Route

This is after optimizing. A gap is present in bottom

right corner.

25. Optimized Route (Without Net)

Here a screenshot without nets. Note the gap in bottom

right corner.

12

26. Initial Check Place

Initially, we had 90.93% density with 14886 cells.

27. Initial DRC Error

Initially, we had 1000 violations.

28. Initial Connectivity Error

Initially. We had 167 violations and 0 Warning

29. Appling Cell & Metal Filler

In blank places we have to add cell and metal filler.

30. Cell And Filler (Without Net)

 After turning net view off.

V. PHYSICAL VERIFICATION

1. DRC Check

We have 0 violation and 0 warning.

2. Geometry Check

We have 0 violation and 0 warning.

13

3. Connectivity Check

We have 0 violation and 0 warning.

4. Antenna Check

We have 0 violations and 0 warning.

5. PG Short Check

We have 0 violation and 0 warning.

6. Power Via Check

We have 0 violation and 0 warning.

7. Power Via Stacked Check

We have 0 violation and 0 warning.

8. AC Limit Check

We have 0 violation and 0 warning.

14

9. Final Check Place

In final design we got density of 104.25% with 23591

cells.

VI. FINAL DESIGN

VII. STA REPORT

Tables for STA report:

TABLE VI 1: Time Design (Setup Mode) (Pre CTS)

Setup Mode All Reg2Reg Default

WNS (ns) 0.427 0.427 8.382

TNS (ns) 0.000 0.000 0.000

Violating Paths 0 0 0

All Paths 9655 9655 0

TABLE VI 2: Time Design DRV (Pre CTS)

DRV Real Total

Nr Nets Worst Vio Nr Nets

max_cap 9 (9) -0.014 10 (10)

max_tran 558 (4090) -2.910 559 (4091)

max_fanout 0 (0) 0 1 (1)

max_lenght 0 (0) 0 0 (0)

TABLE VI 3: Optimized Time Design (Setup Mode) (Pre CTS)

Setup Mode All Reg2Reg Default

WNS (ns) 6.116 6.116 9.375

TNS (ns) 0.000 0.000 0.000

Violating Paths 0 0 0

All Paths 9655 9655 0

TABLE VI 4: Optimized Time Design DRV (Pre CTS)

DRV Real Total

Nr Nets Worst Vio Nr Nets

max_cap 0 (0) 0.000 1 (1)

max_tran 0 (0) 0.000 1 (1)

max_fanout 43(43) -8 41 (41)

max_lenght 0 (0) 0 0 (0)

TABLE VI 5: Time Design (Setup Mode) (After CTS)

Setup Mode All Reg2Reg Default

WNS (ns) 6.251 6.251 9.696

TNS (ns) 0.000 0.000 0.000

Violating Paths 0 0 0

All Paths 9655 9655 33

TABLE VI 6: Time Design (Hold Mode) (After CTS)

Hold Mode All Reg2Reg Default

WNS (ns) -0.595 -0.595 0.000

TNS (ns) -2925.6 -2925.6 0.000

Violating Paths 7817 7817 0

All Paths 9655 9655 0

TABLE VI 7: Time Design DRV (After CTS)

DRV Real Total

Nr Nets Worst Vio Nr Nets

max_cap 0 (0) 0.000 1 (1)

max_tran 0 (0) 0.000 1 (1)

max_fanout 43(43) -8 41 (41)

max_lenght 0 (0) 0 0 (0)

TABLE VI 8: Optimized Time Design (Setup Mode) (After CTS)

Setup Mode All Reg2Reg Default

WNS (ns) 6.498 6.498 9.696

TNS (ns) 0.000 0.000 0.000

Violating Paths 0 0 0

All Paths 9655 9655 33

TABLE VI 9: Optimized Time Design (Hold Mode) (After CTS)

Hold Mode All Reg2Reg Default

WNS (ns) -0.595 -0.595 N/A

TNS (ns) -1406.0 -1406.0 N/A

Violating Paths 6292 6292 N/A

All Paths 9655 9655 N/A

15

TABLE VI 10: Optimized Time Design DRV (After CTS)

DRV Real Total

Nr Nets Worst Vio Nr Nets

max_cap 0 (0) 0.000 0 (0)

max_tran 184(0) -0.624 184 (1130)

max_fanout 42(42) -8 90 (90)

max_lenght 0 (0) 0 0 (0)

VIII. FINAL RESULT COMPARISON TABLE

Here is a table provided for comparison and details.

TABLE VII 1: Table for Various Parameters and Violations

Parameter Initial Final

Density 90.93% 104.25%

Cells Placed 14886 23591

DRC Violations 1000

(117 After using

globalnetconnect

Command)

0

Geometry

Violations

0 0

Connectivity

Violations

167 0

Process Antenna

Violations

0 0

PG Short

Violations

0 0

Power Via

Violations

0 0

Power Via Stacked

Violations

0 0

IX. FUTURE ASPECTS

Microcontrollers today have an issue and an

opportunity.

The opportunity for microcontrollers is around the

“glue” FPGA chips used by designers for decades. If

these FPGA chips are integrated instead of being

standalone, customers can significantly improve the

cost, speed and power consumption of MCUs. This is

a huge value proposition.

While not a new technology, embedded FPGA

(eFPGA) is finally at the stage where it is ready to go

mainstream with multiple suppliers, design wins in

progress and proven silicon. Customers can leverage

this technology in a number of ways, such as:

A reconfigurable accelerator that can directly access

on-chip buses, cache and I/O. One mask can cover

multiple needs and customers can achieve higher

performance.

A reconfigurable I/O that can implement any serial I/O

and can push low-level processing to the I/O block.

This frees up the processor and improves

responsiveness and battery life.

Microcontrollers often have dozens of variations to

accommodate customer requirements for different

combinations of serial I/Os: UART, USART, I2C, SPI

and more.

With eFPGA, serial I/Os can now be programmed as

needed. This enables MCU companies to save on mask

costs and validation and provides customers with

exactly the serial I/O they want, even variations on the

standard versions.

Initially, customers may not even realize they are

using eFPGA because the manufacturer can program

the eFPGA differently for each SKU. The next step is

to use the eFPGA to process I/O so as to offload the

MPU, improve performance and even lower power.

We can see that using eFPGA to implement some

simple, repetitive DSP functions can reduce power

compared to implementing the same functions in the

processor. The result is longer battery life.

Microcontrollers today sometimes have hardwired to

offload the processors to improve

performance. Examples of this are crypto-engines

such as Advanced Encryption Standard (AES.)

Microcontroller companies can also use embedded

FPGA to implement various accelerator functions

(such as AES, FFT, JPEG encode, SHA) with

16

performance 30-130 times faster than an ARM

processor. Another option is to connect the eFPGA

reconfigurable accelerator directly to GPIO: 8 bits, 16

bits, 32 bits or 64 bits This enables much more internal

observation of microcontroller activity when the

customer is trying to understand why their c-code/RTL

combination is not getting the results they were

expecting. Integration of eFPGA into microcontrollers

is happening today now that this technology is

available from multiple suppliers in 180nm to 16nm

process nodes. This will not only benefit

manufacturers with lower engineering costs and faster

time to market, but will also benefit microcontroller

users with greater performance and flexibility in

optimizing their systems.

X. CONCLUSION

Micro-controller circuit can be a very difficult circuit

when designing. When using Genus and Encounter

tool we need to be careful and save our progress every

so often because these tools are prone to crashing thus

resulting in losing our progress. In order to not run into

such crashes, we have to follow instructions from our

manual precisely.

It is absolutely necessary when designing to keep in

mind that a simple miscalculation can result in a

several thousand violations. In order to avoid such

violations, we have to careful in in every step of the

process. For example, initially we had 1000 violations.

After using globalnetconnect command we had 117

violations. We removed these 117 violations

manually.

Various design checks should be performed at regular

intervals when removing such violations manually to

avoid creating a new one or more dangerously creating

one or several geometry violations.

ACKNOWLEDGMENT

We would like to express our eternal gratitude to our

lab instructors and lab assistant for helping us with this

project.

 REFERENCES

[1] VLSI II Lab 5 Manual (Synthesis Using Genus Synthesis

Solution), EEE, AUST.

[2] VLSI II Lab 6 Manual (Physical Design Using Cadence

Encounter (Part 1), EEE, AUST.

[3] VLSI II Lab 7 Manual (Physical Design Using Cadence

Encounter (Part 2), EEE, AUST.

[4] VLSI II Lab 7B Manual (Static Timing Analysis Using

Encounter Digital Implementation System), EEE, AUST.

[5] VLSI II Lab 8 Manual (Physical Verification and Power

Analysis Using Encounter Implementation System), EEE,

AUST.

[6] The Future of Microcontrollers - EETimes

[7] Verilog code for Microcontroller (Part 1 - Specification) -

FPGA4student.com

[8] Verilog code for microcontroller (Part-2- Design) -

FPGA4student.com

[9] Verilog code for Microcontroller (Part 3- Verilog code) -

FPGA4student.com

https://www.eetimes.com/the-future-of-microcontrollers/?fbclid=IwAR0tIDW0Lu9vGWlMnKiaQFlCPOpzGIZT_pi9cbceFzolASe8ax5vfPVo2-Y
https://www.fpga4student.com/2016/11/verilog-hdl-implementation-of-micro.html?fbclid=IwAR0OI9PzES7HleeU87pJObbolgMZQB2XYTRlVxeam49yERXFkCw6-IR0XmI
https://www.fpga4student.com/2016/11/verilog-hdl-implementation-of-micro.html?fbclid=IwAR0OI9PzES7HleeU87pJObbolgMZQB2XYTRlVxeam49yERXFkCw6-IR0XmI
https://www.fpga4student.com/2016/11/verilog-microcontroller-code.html
https://www.fpga4student.com/2016/11/verilog-microcontroller-code.html
https://www.fpga4student.com/2016/11/verilog-code-for-microcontroller.html
https://www.fpga4student.com/2016/11/verilog-code-for-microcontroller.html

