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Abstract— This document notes step by step procedures 

of synthesizing and physical design of a 3 cycle non-

pipelined Harvard Structure Micro-Controller. This 

document also gives an idea of problems can be occurred 

during the process and how to solve those problems. We 

used Genus tool to synthesize and Encounter tool to 

physically design the microcontroller. Encounter tool is 

also used for removing violations and errors. In our 

design we used both command and manual method to 

remove violations and errors. This document also tries to 

solve problems and violations occurring when using 

Encounter tool as it is designed for professional uses and 

not for educational purposes. As this is a group project, 

this paper is divided into several parts to better suit 

individual group member. This document also gives a 

rough idea for future aspect of the project, as 

Microcontrollers are used in almost every aspect of 

electronics field. But future problems are not described 

in detail in this document. 

Keywords— Microcontroller, Genus, Encounter, DRC, 

Connectivity, Via, Violation. 

I.  INTRODUCTION 

A. Microcontroller 

A microcontroller is a compact integrated circuit 

designed to govern a specific operation in an 

embedded system. A typical microcontroller includes 

a processor, memory and input/output (I/O) 

peripherals on a single chip. 

Sometimes referred to as an embedded controller or 

microcontroller unit (MCU), microcontrollers are 

found in vehicles, robots, office machines, medical 

devices, mobile radio transceivers, vending machines 

and home appliances, among other devices. They are 

essentially simple miniature personal computers (PCs) 

designed to control small features of a larger 

component, without a complex front-end operating 

system (OS). 

The Harvard architecture stores machine instructions 

and data in separate memory units that are connected 

by different busses. In this case, there are at least two 

memory address spaces to work with, so there is a 

memory register for machine instructions and another 

memory register for data. Computers designed with 

the Harvard architecture are able to run a program and 

access data independently, and therefore 

simultaneously. Harvard architecture has a strict 

separation between data and code. In a Non-Pipelining 

system, processes like decoding, fetching, execution 

and writing memory are merged into a single unit or a 

single step. Only one instruction is executed at the 

same time. 

 

               Fig I 1: Architecture of Microcontroller 

The following diagram is the architecture of the 

microcontroller. The datapath is shown as black arrows 

and control signals are red arrows. 

The following two type of components holds 

programming context – 

• Program counter, program memory, data 

memory, accumulator, status register (green 

boxes). They are programmer visible registers and 

memories. 

• Instruction register and data register (purple 

boxes). They are programmer invisible registers. 

The following two type of components is Boolean 

logics that do the actual computation work. They are 

stateless - 
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• ALU, MUX1, MUX2, Adder (blue boxes), used 

as a functional unit. 

• Control Logic (yellow box), used to denote all 

control signals (red signal). 

B. Instruction Set 

There are 3 sets of instruction. Each instruction is 12 

bits. There are 3 types of instructions by encoding, 

shown as   following: 

• M type: one operand is accumulator (sometimes 

ignored) and the other operand is from data 

memory; the result can be stored into 

accumulator or the data memory entry (same 

entry as the second operand). 

• I type: one operand is accumulator and the other 

operand is immediate number encoded in 

instruction; the result is stored into accumulator. 

• S type: special instruction, no operand required. 

(e.g., NOP). 

The instruction encoding is given in following table: 

Table I 1: Instruction Encoding 

 

These instructions can be grouped into 4 categories by 

function - 

1. ALU instruction: using ALU to compute result; 

2. Unconditional branch: the GOTO instruction; 

3. Conditional branch: the JZ, JC, JS, JO 

instruction; 

4. Special instruction: the NOP. 

 

Short description of each instructions are given below: 

i) M Type Instructions 

The general format of M type instruction is shown 

as following – 

 

The tables below have detailed information: 

Table I 2: M Type Instruction 

 

 

 

ii) I Type Instructions 

The general format of I type instruction is shown as 

following:

 

The pictures below have detailed information: 
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Table I 3: I Type Instruction 

 

 

iii) S Type Instructions 

The general format of S type instruction is shown as 

following – 

There is only one S type instruction i.e., NOP 

instruction. 

Table I 4: S Type Instruction 

 

C. Timing and State Transition 

The Timing and State Transition are as follows: 

 

Fig I 2: Timing and State Transition 

Each instruction needs 3 clock cycles to finish, i.e. 

FETCH stage, DECODE stage, and EXECUTE stage. 

It is not pipelined. Together with the initial LOAD 

state, it can be considered as an FSM of 3 states 

(technically 4 states). 

There are 4 states. They are: 

• LOAD (initial state): load program to program 

memory, which takes 1 cycle per instruction 

loaded; 

• FETCH (first cycle): fetch current instruction 

from program memory; 

• DECODE (second cycle): decode instruction to 

generate control logic, read data memory for 

operand; 

• EXECUTE (of the third cycle): execute 

instruction; 

 

D. Transitions 

1. LOAD → FETCH (initialization finish): 

2. Clear content of PC, IR, DR, Acc, SR; DMem 

is not required to be cleared. 

3. FETCH → DECODE (rising edge of second 

cycle): 

4. IR = PMem [ PC ] 

5. DECODE → EXECUTE 

6. DR = DMem [ IR[3:0] ] 

7. EXECUTE → FETCH (rising edge of first 

cycle and fourth cycle): 

For non-branch instruction, PC = PC + 1; for branch 

instruction, if branch is taken, PC = IR [7:0], otherwise 

PC = PC + 1; 

For ALU instruction, if the result destination is 

accumulator, Acc = ALU.Out; if the result destination 

is data memory, DMem [ IR[3:0] ] = ALU.Out. 

For ALU instruction, SR = ALU.Status; 

The transitions can be simplified using enable port of 

corresponding registers, e.g., assign ALU.Out to Acc at 

every clock rising edge if Acc.E is set to 1. Such 

control signals as Acc.E are generated as a Boolean 

function of both current state and the current 

instruction. 
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E. Components 

1) Register 

The microcontroller has 3 programmer visible 

register: 

1. Program Counter (8 bit, denoted as PC): 

Contains the index of current executing 

instruction. 

2. Accumulator (8 bit, denoted as Acc): Holds 

result and 1 operand of the arithmetic or logic 

calculation. 

3. Status Register (4 bit, denoted as SR): Holds 4 

status bit, i.e. Z, C, S, O. 

• Z (zero flag, SR[3]): 1 if result is zero, 0 

otherwise. 

• C (carry flag, SR[2]): 1 if carry is 

generated, 0 otherwise. 

• S (sign flag, SR[1]): 1 if result is 

negative (as 2’s complement), 0 

otherwise. 

• (overflow flag, SR[0]): 1 if result 

generates overflow, 0 otherwise. 

 

Each of these registers has an enable port, as a flag for 

whether the value of the register should be updated in 

state transition. They are denoted as PC.E, Acc.E, and 

SR.E. 

 

The microcontroller has 2 programmer invisible 

registers: 

1. Instruction Register (12 bit, denoted as IR): 

Contains the current executing instruction. 

2. Data Register (8 bit, denoted as DR): 

Contains the operand read from data memory. 

Similarly, each of these registers has an enable port as 

a flag for whether the value of the register should be 

updated in state transition. They are denoted as IR.E 

and DR.E 

2) Program Memory 

The microcontroller has a 256-entry program memory 

that stores program instructions, denoted as PMem. 

Each entry is 12 bits, the ith entry is denoted as 

PMem[i]. The program memory has the following 

input/output ports. 

1. Enable port (1 bit, input, denoted as PMem.E): 

enable the device, i.e., if it is 1, then the entry 

specified by the address port will be read out, 

otherwise, nothing is read out. 

2. Address port (8-bit, input, denoted as 

PMem.Addr): specify which instruction entry is 

read out, connected to PC. 

3. Instruction port (12-bit, output, denoted as 

PMem.I): the instruction entry that is read out, 

connected to IR. 

4. 3 special ports are used to load program to the 

memory, not used for executing instructions. 

5. Load enable port (1 bit, input, denoted as 

PMem.LE): enable the load, i.e., if it is 1, then 

the entry specified by the address port will be 

load with the value specified by the load 

instruction input port and the instruction port is 

supplied with the same value; otherwise, the 

entry specified by the address port will be read 

out on instruction port, and value on instruction 

load port is ignored. 

6. Load address port (8-bit, input, denoted as 

PMem.LA): specify which instruction entry is 

loaded. 

7. Load instruction port (12-bit, input, denoted as 

PMem.LI): the instruction that is loaded. 

 

3) Data Memory 

The microcontroller has a 16-entry data memory, 

denoted as DMem. Each entry is 8 bits, the i-th entry is 

denoted as DMem[i]. The program memory has the 

following input/output ports - 

1. Enable port (1 bit, input, denoted as DMem.E): 

Enable the device, i.e. if it is 1, then the entry 

specified by the address port will be read out 

or written in; otherwise nothing is read out or 

written in. 

2. Write enable port (1 bit, input, denoted as 

DMem.WE): Enable the write, i.e., if it is 1, 

then the entry specified by the address port 

will be written with the value specified by the 

data input port and the data output port is 

supplied with the same value; otherwise, the 

entry specified by the address port will be read 

out on data output port, and value on data 

input port is ignored. 

3. Address port (4-bit, input, denoted as 

DMem.Addr): Specify which data entry is 

read out, connected to IR[3:0]. 
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4. Data input port (8-bit, input, denoted as 

DMem.DI): The value that is written in, 

connected to ALU.Out. 

5. Data output port (8- b i t , output, denoted as 

DMem.DO): The data entry that is read out, 

connected to MUX2.In1. 

4) PC Adder 

PC adder is used to add PC by 1, i.e., move to the next 

instruction. This component is pure combinational. It 

has the following ports – 

1. Adder input port (8-bit, input, denoted as 

Adder.In): Connected to PC. 

2. Adder output port (8-bit, output, denoted as 

Adder.Out): Connected to MUX1.In2. 

5) MUX1 

MUX1 is used to choose the source for updating PC. 

If the current instruction is not a branch or it is a branch 

but the branch is not taken, PC is incremented by 1; 

otherwise PC is set to the jumping target, i.e. IR [7:0]. 

It has the following ports – 

1. MUX1 input 1 port (8-bit, input, denoted as 

MUX1.In1): Connected to IR [7:0]. 

2. MUX1 input 2 port (8-bit, input, denoted as 

MUX1.In2): Connected to Adder.Out. 

3. MUX1 selection port (1- bit, input, denoted as 

MUX1.Sel): Connected to control logic. 

4. MUX1 output port (8-bit, output, denoted as 

MUX1.Out): Connected to PC. 

6) ALU 

ALU is used to do the actual computation for the 

current instruction. This component is pure 

combinational. It has the following ports.  

1. ALU operand 1 port (8-bit, input, denoted as 

ALU.Operand1): connected to Acc. 

2. ALU operand 2 port (8-bit, input, denoted as 

ALU.Operand2): connected to MUX2.Out. 

3. ALU enable port (1-bit, input, denoted as 

ALU.E): connected to -control logic. 

4. ALU mode port (4-bit, input, denoted as 

ALU.Mode): connected to control logic. 

5. Current flags port (4-bit, input, denoted as 

ALU.CFlags): connected to SR. 

6. ALU output port (8 bit, output, denoted as 

ALU.Out): connected to DMem.DI. 

7. ALU flags port (4- bit, output, denoted as 

ALU.Flags): the Z (zero), C (carry), S (sign), 

O (overflow) bits, from MSB to LSB, connected 

to status register. 

The mode of ALU is listed in the following table: 

Table I 5: Modes of ALU 

 

7) MUX2 

MUX2 is used to choose the source for operand 2 of 

ALU. If the current instruction is M type, operand 2 of 

ALU comes from data memory; if the current 

instruction is I type, operand 2 of ALU comes from 

the instruction, i.e., IR [7:0]. It has the following ports 

– 

1. MUX2 input 1 port (8-bit, input, denoted as 

MUX2.In1): connected to IR [7:0]. 

2. MUX2 input 2 port (8-bit, input, denoted as 

MUX2.In2): connected to DR. 

3. MUX2 selection port (1- bit, input, denoted 

as MUX2.Sel): connected to control logic. 

4. MUX2 output port (8-bit, output, 

denoted as MUX2.Out): connected to ALU. 

Operand2. 

 

F. Control Unit Design 

Control signal is derived from the current state and 

current instruction. The control logic component is 

purely combinational. There are in total 12 control 

signals, listed as follows- 

1. PC.E: enable port of program counter (PC); 

2. Acc.E: enable port of accumulator (Acc); 

3. SR.E: enable port of status register (SR); 

4. IR.E: enable port of instruction register (IR); 

5. DR.E: enable port of data register (DR); 

6. PMem.E: enable port of program memory 

(PMem); 

7. DMem.E: enable port of data memory (DMem); 
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8. DMem.WE: write enable port of data memory 

(DMem); 

9. ALU.E: enable port of ALU; 

10. ALU.Mode: mode selection port of ALU; 

11. MUX1.Sel: selection port of MUX1; 

12. MUX2.Sel: selection port of MUX2; 

The following table documents the detail of how 

these control signals are generated important signals 

are marked in red: 

TABLE I 6: Control Signal 

 

 

II. RTL (Netlist) and Test Bench 

RTL view of the netlist is given below:  

 

Test bench output of the netlist of microcontroller: 

 

III. SYNTHESIS RESULT  

Our group has following synthesis constraints: 

TABLE II 1: S synthesis Constraints 

Parameter Value 

Clock Frequency (MHz) 83.33 

Maximum Transition 3 

Driving Cell BUFX4 

Operating Condition Slow 

Output Delay (ms) 0.6 

Max Fanout 12 

 

[1] Screenshot of VIM editor  

 

Synthesis is done using genus tool. Here are the 

screenshots while using VIM editor. We used design 

constraints given above. 

[2] GUI Show 

 

A screenshot of using gui_show command. 

[3] Control Logic Unit 
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[4] Data Memory Unit 

 

[5] MUX 1 Unit 

 

[6] MUX 2 Unit 

 

 

[7] PC Adder Unit 

 

 

 

[8] Program Memory Unit 

 

 

 

IV.  PNR OUTPUTS 

Our group had following design constraints: 

Table III 1: Design Constraints 

Parameter Value 

Distance (Die to Core) 11 

Ring (W, D) 3,2 

Stripe 3 

Initial Density 40% 

 

Below screen-shots are given with short description: 

 

1. Importing Design and MMMC Browser Window 

 

Here a screenshot MMMC window after all the inputs 

of analysis views are given. 
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2. Initial Floorplan 

 

Initial design of the floorplan after given MMMC 

analysis view inputs. 

3. Floorplan with Specification 

 

Floorplan of the design within given constraints. 

4. Adding Ring 

 

Adding ring in dye area. 

 

5. Adding Stripes 

 

Here we are adding 3 stripes as given constraints. 

 

 

6. After Adding Stripes 

 

Adding 3 stripes. 

7. Power Planning 

 

Here, we a final screenshot after power planning 

within given constraints. 
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8. SR Route 

 

Starting SR routing here. 

 

9. SR Route (Via Generation) 

 

A screenshot of Via generation tab. 

10. SR Route Final 

 

Final screenshot of routing window. 

 

11. Pin Placement 

 

Necessary placement for the pin in all direction.  

 

12. Placing Design 

 

After placing the design initially. 

13. Placement Without Net 

 

Screenshot with net view turned off. 
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14. Time Design (Pre CTS) 

  

STA report (detail given below) before CTS. 

15. Optimizing Design (Pre CTS) 

 

Optimized STA report (detail given below) before 

CTS. 

16. Creating Clock 

 

We are building clock for the design. 

17. Using CTS 

 

Here we are building a clock tree. 

18. Routing Window 

 

Here we are routing the design. 

19. Routing Attribute 

  

Here we see the wire status is routed. 
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20. Time Design (Setup) 

 

Timing design for setup mode. 

21. Time Design (Hold) 

 

Timing design for hold mode. 

22. Optimizing Design 

 

Optimizing design for setup mode. 

 

23. Optimizing Design (Hold) 

 

Optimizing design for hold mode. 

24. Optimized Route 

 

This is after optimizing. A gap is present in bottom 

right corner. 

25. Optimized Route (Without Net) 

 

Here a screenshot without nets. Note the gap in bottom 

right corner. 
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26. Initial Check Place 

 

Initially, we had 90.93% density with 14886 cells. 

27. Initial DRC Error 

 

Initially, we had 1000 violations. 

28. Initial Connectivity Error 

 

Initially. We had 167 violations and 0 Warning 

29. Appling Cell & Metal Filler 

  

In blank places we have to add cell and metal filler. 

30. Cell And Filler (Without Net) 

 

 After turning net view off. 

 

V.  PHYSICAL VERIFICATION 

 

1. DRC Check 

 

We have 0 violation and 0 warning. 

2. Geometry Check 

 

We have 0 violation and 0 warning. 
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3. Connectivity Check 

 

We have 0 violation and 0 warning. 

 

 

4. Antenna Check 

 

We have 0 violations and 0 warning. 

5. PG Short Check 

 

We have 0 violation and 0 warning. 

 

 

6. Power Via Check 

 

We have 0 violation and 0 warning. 

 

7. Power Via Stacked Check 

 

We have 0 violation and 0 warning. 

 

8. AC Limit Check 

 

We have 0 violation and 0 warning. 
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9. Final Check Place 

 

In final design we got density of 104.25% with 23591 

cells. 

VI. FINAL DESIGN 

 

VII. STA REPORT 

Tables for STA report: 

TABLE VI 1: Time Design (Setup Mode) (Pre CTS) 

Setup Mode All Reg2Reg Default 

WNS (ns) 0.427 0.427 8.382 

TNS (ns) 0.000 0.000 0.000 

Violating Paths 0 0 0 

All Paths 9655 9655 0 

 

TABLE VI 2: Time Design DRV (Pre CTS) 

DRV Real Total 

Nr Nets Worst Vio Nr Nets 

max_cap 9 (9) -0.014 10 (10) 

max_tran 558 (4090) -2.910 559 (4091) 

max_fanout 0 (0) 0  1 (1) 

max_lenght 0 (0) 0  0 (0) 

 

TABLE VI 3: Optimized Time Design (Setup Mode)  (Pre CTS) 

Setup Mode All Reg2Reg Default 

WNS (ns) 6.116 6.116 9.375 

TNS (ns) 0.000 0.000 0.000 

Violating Paths 0 0 0 

All Paths 9655 9655 0 

 

TABLE VI 4: Optimized Time Design DRV (Pre CTS) 

DRV Real Total 

Nr Nets Worst Vio Nr Nets 

max_cap 0 (0) 0.000 1 (1) 

max_tran 0 (0) 0.000 1 (1) 

max_fanout 43(43) -8  41 (41) 

max_lenght 0 (0) 0  0 (0) 

 

TABLE VI 5: Time Design (Setup Mode) (After CTS) 

Setup Mode All Reg2Reg Default 

WNS (ns) 6.251 6.251 9.696 

TNS (ns) 0.000 0.000 0.000 

Violating Paths 0 0 0 

All Paths 9655 9655 33 

 

TABLE VI 6: Time Design (Hold Mode) (After CTS) 

Hold Mode All Reg2Reg Default 

WNS (ns) -0.595 -0.595 0.000 

TNS (ns) -2925.6 -2925.6 0.000 

Violating Paths 7817 7817 0 

All Paths 9655 9655 0 

 

TABLE VI 7: Time Design DRV (After CTS) 

DRV Real Total 

Nr Nets Worst Vio Nr Nets 

max_cap 0 (0) 0.000 1 (1) 

max_tran 0 (0) 0.000 1 (1) 

max_fanout 43(43) -8  41 (41) 

max_lenght 0 (0) 0  0 (0) 

 

TABLE VI 8: Optimized Time Design (Setup Mode) (After CTS) 

Setup Mode All Reg2Reg Default 

WNS (ns) 6.498 6.498 9.696 

TNS (ns) 0.000 0.000 0.000 

Violating Paths 0 0 0 

All Paths 9655 9655 33 

 

TABLE VI 9: Optimized Time Design (Hold Mode) (After CTS) 

Hold Mode All Reg2Reg Default 

WNS (ns) -0.595 -0.595 N/A 

TNS (ns) -1406.0 -1406.0 N/A 

Violating Paths 6292 6292 N/A 

All Paths 9655 9655 N/A 
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TABLE VI 10: Optimized Time Design DRV (After CTS) 

DRV Real Total 

Nr Nets Worst Vio Nr Nets 

max_cap 0 (0) 0.000 0 (0) 

max_tran 184(0) -0.624 184 (1130) 

max_fanout 42(42) -8  90 (90) 

max_lenght 0 (0) 0  0 (0) 

 

 

VIII. FINAL RESULT COMPARISON TABLE 

Here is a table provided for comparison and details. 

TABLE VII 1: Table for Various Parameters and Violations 

Parameter Initial Final 

Density 90.93% 104.25% 

Cells Placed 14886 23591 

DRC Violations 1000 

(117 After using 

globalnetconnect 

Command) 

0 

Geometry 

Violations 

0 0 

Connectivity 

Violations 

167 0 

Process Antenna 

Violations 

0 0 

PG Short 

Violations 

0 0 

Power Via 

Violations 

0 0 

Power Via Stacked 

Violations 

0 0 

  

 

IX. FUTURE ASPECTS 

Microcontrollers today have an issue and an 

opportunity. 

The opportunity for microcontrollers is around the 

“glue” FPGA chips used by designers for decades. If 

these FPGA chips are integrated instead of being 

standalone, customers can significantly improve the 

cost, speed and power consumption of MCUs. This is 

a huge value proposition. 

While not a new technology, embedded FPGA 

(eFPGA) is finally at the stage where it is ready to go 

mainstream with multiple suppliers, design wins in 

progress and proven silicon.  Customers can leverage 

this technology in a number of ways, such as: 

A reconfigurable accelerator that can directly access 

on-chip buses, cache and I/O.  One mask can cover 

multiple needs and customers can achieve higher 

performance. 

A reconfigurable I/O that can implement any serial I/O 

and can push low-level processing to the I/O block. 

This frees up the processor and improves 

responsiveness and battery life. 

 

 

Microcontrollers often have dozens of variations to 

accommodate customer requirements for different 

combinations of serial I/Os: UART, USART, I2C, SPI 

and more. 

With eFPGA, serial I/Os can now be programmed as 

needed. This enables MCU companies to save on mask 

costs and validation and provides customers with 

exactly the serial I/O they want, even variations on the 

standard versions. 

Initially, customers may not even realize they are 

using eFPGA because the manufacturer can program 

the eFPGA differently for each SKU. The next step is 

to use the eFPGA to process I/O so as to offload the 

MPU, improve performance and even lower power. 

We can see that using eFPGA to implement some 

simple, repetitive DSP functions can reduce power 

compared to implementing the same functions in the 

processor.  The result is longer battery life. 

Microcontrollers today sometimes have hardwired to 

offload the processors to improve 

performance.  Examples of this are crypto-engines 

such as Advanced Encryption Standard (AES.) 

Microcontroller companies can also use embedded 

FPGA to implement various accelerator functions 

(such as AES, FFT, JPEG encode, SHA) with 
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performance 30-130 times faster than an ARM 

processor. Another option is to connect the eFPGA 

reconfigurable accelerator directly to GPIO: 8 bits, 16 

bits, 32 bits or 64 bits This enables much more internal 

observation of microcontroller activity when the 

customer is trying to understand why their c-code/RTL 

combination is not getting the results they were 

expecting. Integration of eFPGA into microcontrollers 

is happening today now that this technology is 

available from multiple suppliers in 180nm to 16nm 

process nodes. This will not only benefit 

manufacturers with lower engineering costs and faster 

time to market, but will also benefit microcontroller 

users with greater performance and flexibility in 

optimizing their systems. 

X. CONCLUSION 

Micro-controller circuit can be a very difficult circuit 

when designing. When using Genus and Encounter 

tool we need to be careful and save our progress every 

so often because these tools are prone to crashing thus 

resulting in losing our progress. In order to not run into 

such crashes, we have to follow instructions from our 

manual precisely. 

It is absolutely necessary when designing to keep in 

mind that a simple miscalculation can result in a 

several thousand violations. In order to avoid such 

violations, we have to careful in in every step of the 

process. For example, initially we had 1000 violations. 

After using globalnetconnect command we had 117 

violations. We removed these 117 violations 

manually. 

Various design checks should be performed at regular 

intervals when removing such violations manually to 

avoid creating a new one or more dangerously creating 

one or several geometry violations.  
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